

Multisensory model for early detection of Cercospora leaf spot in sugar beet based on UAV multispectral imaging, epidemiological and micrometeorological data

<u>FACUNDO ISPIZUA YAMATI</u>, ABEL BARRETO, MARK VARRELMANN and ANNE-KATRIN MAHLEIN Ispizua@ifz-goettingen.de

Field experiments

- 4 years of experiments (2019-2022)
- 3 locations
- 3 types of experiments
- Variety trial
- Measurement with stationary lotsensors and spore traps
- Large scale trial

Ground truthing

- Weekly field data collection
- Digital georeferenced scoring
- Digital cataloguing of plants
- Extrapolation of the real annotations to each plant

* Günder et al.: "Agricultural Plant Cataloging and Establishment of a Data Framework from Crop Images.

Digital field annotations

Cumulative sume of spore-DNA

Annotations and cataloguing plants

Data preprocessing

- Transformation of each dataset into a layer for the model
- Additional indices are derived from each dataset
- More than 30 layers/features have been generated

Results

- Selection of the most important features
- Discard the features that generate bias
- Testing of different machine learning models
- Training of models for catalogued plants and at pixel level

Result of the model generated with the use of the 10 most important features

Conclusions

- Biotic and environmental factors are important to better understand plant response to disease infection.
- It is possible to drastically reduce model computation time by discarding variables that are highly correlated with each other or that contribute little to the models.
- It is possible to determine in maps generated with UAV the most affected areas.
- This work is the first step towards the generation of a model that allows the integration of optical and environmental data for detection.