Diese Seite drucken

Yield decrease in sugar beet

  • Autor/in: Koch, H.-J., J. Dieckmann, A. Büchse, B. Märländer
  • Jahr: 2009
  • Zeitschrift: European Journal of Agronomy 30
  • Seite/n: 101-109
  • Stichworte: soil structure Bodenstruktur penetration resistance Plant density Soil structure Penetration resistance Dry bulk density Air filled pore volume Plant available water Pflanzendichte dry bulk density


In a long-term series of on-farm tillage trials (10 loessial sites in southern and eastern Germany; annual mouldboard ploughing 0.25–0.3 m deep, mulching with a rigid-tine cultivator 0.1–0.15 m deep, direct drilling with no tillage except seedbed preparation for sugar beet solely) sugar beet yield was significantly decreased by direct drilling compared to ploughing. This study was conducted to (i) show that the lower plant density caused by mulching and direct drilling contributes to yield decrease but explains effects just partially, and (ii) determine the relation between soil structural properties and sugar beet yield. In 2003–2005 plant density experiments (53,000, 65,000 and 82,000 plants ha−1) were introduced to tillage plots on five selected environments. Yield and soil structural properties of four layers representing 0–0.43 m soil depth were determined. White sugar yield (WSY) significantly declined with direct drilling compared to ploughing treatment, whereas mulching treatment diminished WSY less pronounced. Moreover, decreasing plant density significantly lowered WSY. No interactions between tillage and plant density occurred, revealing that both factors additively affected WSY. Decreasing tillage depth increased penetration resistance (PR) and dry bulk density (DBD), and diminished air filled pore volume (AFPV) in the topsoil down to 0.27 m depth. Several soil structural parameters were closely correlated with each other as well as WSY. Variation of single parameters explained up to 60% of WSY variance attributed to tillage. Combining DBD from 0.03 to 0.07 m depth, average PR from 0.03 to 0.27 m and AFPV from 0.03 to 0.18 m soil depth explained 77% of the tillage effect. Nevertheless, multi-collinearity of soil physical parameters allowed no clear conclusions on the cause-and-effect mechanisms. Conclusively, lowered plant density and soil structure degradation due to reduced tillage may independently decrease sugar beet yield. When grown on loessial soils this crop requires mechanical loosening down to 0.15–0.20 m depth to produce high yields.
FaLang translation system by Faboba