• Forschung - einfache Suche
  • Projektsuche
  • Publikationssuche

Yield of bolting winter beet (Beta vulgaris L.) as affected by plant density, genotype and environment

  • Autor/in: Reinsdorf, E., H.-J. Koch, J. Loel, C.M. Hoffmann
  • Jahr: 2014
  • Zeitschrift: European Journal of Agronomy
  • Seite/n: 1-8
  • Stichworte: sugar beet Sugar beet Biomass yield Pruning Energy crop Taproot diametera


Winter beet roots and shoots might be a favorable substrate for biogas production in Central Europe. However, detailed information about the attainable yield of this crop is lacking. Thus, the impact of plantdensity, genotype and environmental conditions on total dry matter yield of winter beet crops that boltafter winter was investigated. A significant increase of the dry matter yield (esp. shoot) was expected by harvesting the 1st shoot after flowering in June followed by a final harvest of the whole plant in July. In 2009/10, 2010/11 and 2011/12, three series of field trials with (i) 3 target plant densities (148, 246, 370 thousand plants ha−1) and (ii) 3 different sugar beet genotypes were conducted at Göttingen (Lower Saxony, GER) and Kiel (Schleswig-Holstein, GER); (iii), additional field trials with 5 different sugar beet genotypes cultivated at 2 target plant densities (148, 246 thousand plants ha−1) were conducted in 2011/12, to investigate the relation between maximum taproot diameter and the shoot and taproot yield of bolting winter beet. The total dry matter yield considerably varied between 4 and 23 t ha−1. It was predominantly affected by the environment and to a substantially lower extent by plant density. Increasing plant densities increased the total dry matter yield, resulting in a significantly higher total dry matter yield at plant densities ≥300,000 plants ha−1 compared with lower plant densities. Genotypic differences in total dry matter yield were negligibly small. Pruning in June substantially increased the total dry matter yield in July by ca. 8 t ha−1 only in one out of three environments. Final yield in June (without pruning) and July (pruning in June) was positively related with cumulated temperature and global radiation, but also with taproot dry matter yield before winter. The taproot, shoot (1st, 2nd) and total plant yield were positively correlated with maximum taproot diameter. In conclusion, high dry matter yields close to yields of established energy crops grown over winter were obtained with winter beet roots and shoots only under very favorable conditions (climate, single plant size). High yields can be achieved after good pre-winter development. However, for sufficient frost tolerance the taproot size of plants must be rather small. Hence, the cultivation of bolting winter beet under Central European climate conditions has to face a severe conflict of goals concerning winter survival and yield formation.
FaLang translation system by Faboba
IfZ - Institut für Zuckerrübenforschung · Holtenser Landstr. 77 · 37079 Göttingen · mail@ifz-goettingen.de · Impressum · Datenschutz previous_page

Wir nutzen Cookies auf unserer Website. Einige von ihnen sind essenziell für den Betrieb der Seite, während andere uns helfen, diese Website und die Nutzererfahrung zu verbessern (Tracking Cookies). Sie können selbst entscheiden, ob Sie die Cookies zulassen möchten. Bitte beachten Sie, dass bei einer Ablehnung womöglich nicht mehr alle Funktionalitäten der Seite zur Verfügung stehen.