• Forschung - einfache Suche
  • Projektsuche
  • Publikationssuche

Automatic UAV-based counting of seedlings in sugar-beet field and extension to maize and strawberry

  • Autor/in: Barreto, A., P. Lottes, F.R. Ispizua Yamati, S. Baumgarten, N.A. Wolf, C. Stachniss, A.-K. Mahlein, S. Paulus
  • Jahr: 2021
  • Zeitschrift: Computers and Electronics in Agriculture 191
  • Seite/n: doi.org/10.1016/j.compag.2021.106493
  • Stichworte: Deep learning; FCN; UAV; Sugar beet; Plant segmentation; Time-series; Intra-row distance; Growth stage


Counting crop seedlings is a time-demanding activity involved in diverse agricultural practices like plant cultivating, experimental trials, plant breeding procedures, and weed control. Unmanned Aerial Vehicles (UAVs) carrying RGB cameras are novel tools for automatic field mapping, and the analysis of UAV images by deep learning methods can provide relevant agronomic information. UAV-based camera systems and a deep learning image analysis pipeline are implemented for a fully automated plant counting in sugar beet, maize, and strawberry fields in the present study. Five locations were monitored at different growth stages, and the crop number per plot was automatically predicted by using a fully convolutional network (FCN) pipeline. Our FCN-based approach is a single model for jointly determining both the exact stem location of crop and weed plants and a pixel-wise plant classification considering crop, weed, and soil. To determinate the approach performance, predicted crop counting was compared to visually assessed ground truth data. Results show that UAV-based counting of sugar-beet plants delivers forecast errors lower than 4.6%, and the main factors for performance are related to the intra-row distance and the growth stage. The pipeline’s extension to other crops is possible; the errors of the predictions are lower than 4% under practical field conditions for maize and strawberry fields. This work highlight the feasibility of automatic crop counting, which can reduce manual effort to the farmers.
FaLang translation system by Faboba
IfZ - Institut für Zuckerrübenforschung · Holtenser Landstr. 77 · 37079 Göttingen · mail@ifz-goettingen.de · Impressum · Datenschutz previous_page

Wir nutzen Cookies auf unserer Website. Einige von ihnen sind essenziell für den Betrieb der Seite, während andere uns helfen, diese Website und die Nutzererfahrung zu verbessern (Tracking Cookies). Sie können selbst entscheiden, ob Sie die Cookies zulassen möchten. Bitte beachten Sie, dass bei einer Ablehnung womöglich nicht mehr alle Funktionalitäten der Seite zur Verfügung stehen.