• Forschung - einfache Suche
  • Projektsuche
  • Publikationssuche

Technical workflows for hyperspectral plant image assessment and processing on the greenhouse and laboratory scale

  • Autor/in: Paulus, S., A.-K. Mahlein
  • Jahr: 2020
  • Zeitschrift: GigaScience 9
  • Seite/n: doi: 10.1093/gigascience/giaa090


The use of hyperspectral cameras is well established in the field of plant phenotyping, especially as a part of high-throughput routines in greenhouses. Nevertheless, the workflows used differ depending on the applied camera, the plants being imaged, the experience of the users, and the measurement set-up. Results This review describes a general workflow for the assessment and processing of hyperspectral plant data at greenhouse and laboratory scale. Aiming at a detailed description of possible error sources, a comprehensive literature review of possibilities to overcome these errors and influences is provided. The processing of hyperspectral data of plants starting from the hardware sensor calibration, the software processing steps to overcome sensor inaccuracies, and the preparation for machine learning is shown and described in detail. Furthermore, plant traits extracted from spectral hypercubes are categorized to standardize the terms used when describing hyperspectral traits in plant phenotyping. A scientific data perspective is introduced covering information for canopy, single organs, plant development, and also combined traits coming from spectral and 3D measuring devices. Conclusions This publication provides a structured overview on implementing hyperspectral imaging into biological studies at greenhouse and laboratory scale. Workflows have been categorized to define a trait-level scale according to their metrological level and the processing complexity. A general workflow is shown to outline procedures and requirements to provide fully calibrated data of the highest quality. This is essential for differentiation of the smallest changes from hyperspectral reflectance of plants, to track and trace hyperspectral development as an answer to biotic or abiotic stresses.
FaLang translation system by Faboba
IfZ - Institut für Zuckerrübenforschung · Holtenser Landstr. 77 · 37079 Göttingen · mail@ifz-goettingen.de · Impressum · Datenschutz previous_page

Wir nutzen Cookies auf unserer Website. Einige von ihnen sind essenziell für den Betrieb der Seite, während andere uns helfen, diese Website und die Nutzererfahrung zu verbessern (Tracking Cookies). Sie können selbst entscheiden, ob Sie die Cookies zulassen möchten. Bitte beachten Sie, dass bei einer Ablehnung womöglich nicht mehr alle Funktionalitäten der Seite zur Verfügung stehen.